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Abstract

Numerical methods are used to investigate the transient, conjugate, forced convection heat/mass transfer from a finite flat plate to a steady
stream of viscous, incompressible fluid. The heat/mass balance equations were solved numerically in Cartesian coordinates by a finite difference
method. The values considered for the plate Reynolds number and Prandtl number are Re = 100 and Pr = 0.1, 1 and 10. The computations were
focused on the influence of the physical properties ratios and aspect ratio on the heat/mass transfer rate.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The finite/infinite flat plate, the infinite cylinder and the
sphere are the benchmark problems for the analysis of heat/
mass transfer in external flows. The phrase “conjugate heat
transfer” was used for the first time in [1] to describe the heat
transfer between an internally heated semi-infinite flat plate and
a fluid in laminar flow. Perelman [1] analysed the coupling of
forced convective heat transfer in a boundary layer flow over
a flat plate of finite thickness with two-dimensional thermal
conduction. Later, Luikov et al. [2] presented an analytical but
complex solution for the semi-infinite plate using a generalized
Fourier sine transform. However, no numerical results were re-
ported in [2]. The case of a finite plate was analysed in [3] by
expanding the interfacial temperature as a power series in the
square root of distance along the plate. An approximate solution
of the semi-infinite plate was presented by Luikov [4] assuming
that the temperature in the plate varies linearly with the nor-
mal distance from the fluid–solid interface. Chida and Kato [5,
6] solved the problem by vectorial dimensional analysis. Pay-
var [7], Karvinen [8] and Gosse [9] extended and improved the
results obtained in [2,4]. Sparrow and Chyu [10] studied the
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conjugate heat transfer from a vertical plate fin to a laminar
forced convection flow. One-dimensional conduction equation
for the fin and boundary layer equations for the fluid were
solved simultaneously considering the continuity of tempera-
ture and heat flux at the solid–fluid interface. The analysis of the
conjugate forced convection heat transfer from small isother-
mal heat sources embedded in a large substrate for hydrody-
namically fully developed laminar channel flow was performed
in [11].

Other solutions of the conjugate heat/mass transfer from a
finite/infinite flat plate were obtained analytically or numeri-
cally in [12–31] (in agreement with the aims of this work, we
restricted the citation only to the forced convection analysis in
laminar flow). The following observations can be made from
the analysis of the mathematical models used in [1–31]:

– the boundary layer approximation was widely used to
model the transfer in the fluid;

– except for Pozzi and coworkers [12,16,24,25,28] (and the
references cited herein), Dorfman [27] and Juncu [29],
a steady temperature profile in both phases was assumed;
Pozzi and co-workers, focused on the unsteady conjugate
heat transfer problem from a semi-infinite plate; an inte-
gral formulation of the boundary layer equations models
the heat transfer in the fluid phase; in the solid, the heat
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Nomenclature

cP heat capacity
k thermal conductivity
L plate length
Nu Nusselt number
Pr Prandtl (Schmidt) number, Pr = ν/αf

Re Reynolds number based on plate length, Re =
U∞L/ν

t time
T temperature
x streamwise (horizontal) coordinate
X nondimensional streamwise coordinate, X = x/L

y transverse (vertical) coordinate
Y nondimensional transverse coordinate, Y = y/L

Z dimensionless temperature defined by the relation,

Zf (p) = Tf (p)−Tf,∞
Tp,0−Tf,∞

Greek symbols

α thermal diffusivity

ε aspect ratio
Φ conductivity ratio, kp/kf

ν kinematic viscosity of the fluid phase
ρ density
τ dimensionless time or Fourier number,

τ = tα/L2

ω dimensionless vorticity
ψ dimensionless stream function
Ξ volume heat capacity ratio, (ρpcP,p)/(ρf cP,f )

Subscripts

ext refers to external value
f refers to the fluid
int refers to internal value
p refers to plate
0 initial conditions
∞ large distance from the plate
transfer in the axial direction is neglected (one dimensional,
linear variation in the direction normal to interface); in [27]
the one dimensional transient conduction equations for the
wet and dry portions of the plate, conjugated at the mov-
ing film front, were solved; the unsteady forced convection
heat transfer from a finite plate with spatially uniform tem-
perature was analysed numerically in [29].

To our knowledge, the only fully numerical solution of the
conjugate problem was obtained in [22]. Considering the tem-
perature of the unwetted side of the plate constant, Vynnycky
et al. [22] presented steady numerical solutions for 102 � Re �
104, Pr = 10−2, 1, 102, ε = 0.25, 1 and Φ = 1,2,5 and 20.

A steady temperature profile inside the plate and in the fluid
phase can be achieved only if a heat/mass source is present in
the system. When there is no heat/mass source in the system, the
conjugate problem must be rewritten and solved as an unsteady
one. The aim of this paper is to analyse the unsteady conju-
gate heat/mass transfer from a flat plate. To our knowledge, this
problem was not investigated until now. The influence of the
physical properties ratio and aspect ratio on the heat/mass trans-
fer rate is investigated for Re = 100 (Re is the plate Reynolds
number) and for three values of the Prandtl number, Pr = 0.1,
1 and 10.

2. Model equations

Consider the steady, laminar, incompressible, two dimen-
sional motion of a Newtonian fluid at zero incidence past a
hot or cold flat plate occupying the region −L/2 � x � L/2,
−εL � y � 0 (see Fig. 1). The plate has finite length L and
thickness εL. The ambient forced flow occupies the region,
−∞ < x < ∞, y � 0 (the same situation as in [22]). The free
stream velocity and concentration/temperature are denoted by
U∞ and C∞/T∞, respectively. The sides of the plate located
Fig. 1. Schematic of the problem.

at y = −εL and x = ±(L/2) are insulated. Due to the com-
plexities of the problem, we consider also valid the following
statements:

– the effects of buoyancy and viscous dissipation are negligi-
ble;

– the physical properties of the material of the plate and the
fluid are considered to be uniform, isotropic and constant;

– no emission or absorption of radiant energy;
– no phase change;
– no chemical reaction inside the plate or in the surrounding

fluid;
– no pressure diffusion or thermal diffusion.

The assumptions practiced in this work are those usually em-
ployed in the analysis of the analogy between heat and mass
transfer. For the simplicity and clarity of the presentation, in
the remainder of this work, we will use only the terminology
specific to heat transfer. This does not mean however that the
implication of the present results in mass transfer should be ig-
nored.
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Nondimensionalizing the basic conservation balances for
momentum and thermal energy using the free stream fluid prop-
erties and the plate length, we obtain the governing differential
equations:

– fluid motion

∂2ψ

∂X2
+ ∂2ψ

∂Y 2
= ω, −∞ < X < ∞, Y > 0 (1a)

Re

(
∂ψ

∂Y

∂ω

∂X
− ∂ψ

∂X

∂ω

∂Y

)
= ∂2ω

∂X2
+ ∂2ω

∂Y 2

−∞ < X < ∞, Y > 0 (1b)

– energy

∂Zf

∂τf

+ Re Pr

(
∂ψ

∂Y

∂Zf

∂X
− ∂ψ

∂X

∂Zf

∂Y

)

= ∂2Zf

∂X2
+ ∂2Zf

∂Y 2
, −∞ < X < ∞, Y > 0 (2a)

∂Zp

∂τp

= ∂2Zp

∂X2
+ ∂2Zp

∂Y 2

−1/2 < X < 1/2, −ε < Y < 0 (2b)

in which

Re = U∞L

ν
, Pr = ν

α

The boundary conditions are:

ψ = ω = ∂Zf

∂Y
= 0, |X| > 1/2, Y = 0 (3a)

ψ = ∂ψ

∂Y
= 0, Zf = Zp

Φ
∂Zp

∂Y
= ∂Zf

∂Y
, |X| � 1/2, Y = 0 (3b)

∂Zp

∂X
= 0, X = ±1

2
, −ε � Y � 0 (3c)

∂Zp

∂Y
= 0, |X| � 1

2
, Y = −ε (3d)

ψ → Y, ω → 0, Zf → 0

r = (X2 + Y 2)1/2 → ∞ (3e)

The dimensionless initial conditions are:

τ = 0, Zp = 1

Zf

(|X| > 1/2, Y � 0 and |X| � 1/2, Y > 0
) = 0 (4)

The physical quantities of interest are the plate average tem-
perature Z̄p , the local Nusselt number, NuX , the overall Nus-
selt number, Nup(f ) and the fractional Nusselt numbers, Nuint,
Nuext. Considering as driving force the difference between the
instantaneous plate average temperature and the free stream
temperature, the local and overall Nu numbers (Nup if Φ � 1
and Nuf if Φ > 1) are given by

NuX = − 1
¯

∂Zf

∂Y

∣∣∣∣ (5)

Zp Y=0
Nuf (p) = −(Φ)
1

Z̄p

1/2∫
−1/2

∂Zf

∂Y

∣∣∣∣
Y=0

dX (6a)

or

Nup(f ) = −ε(Ξ)
d ln Z̄p

dτp

(6b)

The plate average temperature was calculated with the relation

Z̄p = 1

ε

0∫
−ε

1/2∫
−1/2

Zp dX dY (7)

The fractional Nusselt numbers were computed as

Nuint = − 1

Z̄p − Z̄p,s

1/2∫
−1/2

∂Zf

∂Y

∣∣∣∣
Y=0

dX (8a)

Nuext = − 1

Z̄p,s

1/2∫
−1/2

∂Zf

∂Y

∣∣∣∣
Y=0

dX (8b)

where Z̄p,s is the dimensionless surface average temperature of
the plate,

Z̄p,s =
1/2∫

−1/2

Zp|Y=0 dX (9)

The relation between the fractional and overall Nu numbers is

1

Nup

= 1

Nuint
+ Φ

1

Nuext
if Φ � 1

1

Nuf

= 1

Φ

1

Nuint
+ 1

Nuext
if Φ � 1

3. Method of solution

The energy balance equations and the Navier–Stokes equa-
tions were solved numerically. The finite difference method was
used for discretization.

The Navier–Stokes equations being uncoupled from the en-
ergy balance equations can be solved independently of them.
The algorithm employed is the nested defect-correction itera-
tion [32,33]. Eq. (1a) was discretized with the central second
order accurate finite difference scheme. A double discretiza-
tion (upwind and central finite difference schemes), necessary
for the defect correction iteration, was used for Eq. (1b). Nu-
merical experiments were made with the discretization steps
�X = �Y = 1/64,1/128,1/256.

The main problem in solving numerically the present
Navier–Stokes equations is the boundary conditions at infin-
ity. The simplest and most common approach is simply to use
the uniform stream condition (3e) at large but finite values of
X and Y , denoted as X∞ and Y∞. The numerical experiments
made in [34] showed that this method provides accurate results
when Gr � 0 (Gr is the Grashof number for heat transfer—in
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Table 1
Asymptotic values of the overall and fractional Nu numbers for Re = 100, Pr = 1 and ε = 1

Φ Ξ

0.01 0.1 0.2 0.5 1 2 5 10 100

0 2.4674
0.01 2.46a 2.46 2.46 2.46 2.46 2.461 2.46 2.46 2.46

2.469b 2.469 2.469 2.469 2.469 2.469 2.469 2.469 2.469
7.38c 7.486 7.492 7.495 7.495 7.495 7.495 7.495 7.495

0.1 2.39 2.402 2.403 2.403 2.403 2.403 2.403 2.403 2.403
2.485 2.483 2.483 2.483 2.483 2.483 2.483 2.483 2.483
6.32 7.37 7.43 7.47 7.48 7.48 7.49 7.49 7.49

0.2 2.28 2.337 2.339 2.34 2.34 2.34 2.34 2.34 2.34
2.498 2.498 2.497 2.497 2.497 2.497 2.497 2.497 2.497
5.20 7.25 7.37 7.43 7.46 7.47 7.48 7.48 7.48

0.5 1.795 2.15 2.16 2.164 2.167 2.167 2.167 2.168 2.168
2.624 2.542 2.54 2.538 2.538 2.538 2.537 2.537 2.537
2.84 6.92 7.19 7.35 7.40 7.43 7.44 7.45 7.46

1 1.063 1.859 1.89 1.91 1.916 1.919 1.92 1.92 1.92
2.785 2.608 2.601 2.596 2.595 2.595 2.594 2.594 2.594
1.72 6.47 6.94 7.22 7.32 7.37 7.40 7.41 7.42

2 1.061 2.814 2.96 3.05 3.07 3.09 3.09 3.10 3.10
2.896 2.708 2.692 2.683 2.680 2.678 2.678 2.677 2.677
1.30 5.86 6.58 7.04 7.20 7.28 7.33 7.34 7.35

5 1.015 3.77 4.256 4.57 4.68 4.73 4.765 4.776 4.786
2.960 2.850 2.827 2.813 2.809 2.807 2.805 2.804 2.804
1.09 5.13 6.09 6.77 7.02 7.14 7.21 7.24 7.26

10 0.986 4.12 4.854 5.38 5.569 5.666 5.723 5.743 5.76
2.980 2.920 2.90 2.890 2.890 2.885 2.884 2.884 2.883
1.02 4.80 5.83 6.61 6.898 7.05 7.14 7.17 7.20

100 0.967 4.385 5.43 6.26 6.59 6.77 6.878 6.916 6.945
2.99 2.99 2.99 2.99 2.99 2.99 2.985 2.985 2.985
0.97 4.45 5.53 6.40 6.74 6.93 7.04 7.08 7.11

∞ 0.92 4.56 5.68 6.59 6.95 7.13 7.25 7.29 7.32

a Overall Nu number, Nup if Φ < 1, Nuf if Φ � 1. b Internal Nu number, Nuint.
c External Nu number, Nuext.
[34] a combined forced and free convection flow was studied).
The method was found to be entirely unsatisfactory for Gr < 0.
To solve the case Gr < 0, Robertson et al. [34] used the so-
called far-field corrections for both ψ and ω. For a similar flow
problem (without natural convection), Leal [35] did not find
necessary the far-field corrections. However, Leal [35] recom-
mended a carefully evaluation of the influence of ∞ on the
solutions. In spite of these facts, far-field corrections similar to
those proposed in [34] were used in [22], in the absence of any
free convection phenomena.

Some ideas in solving the steady, laminar flow past a finite
flat plate were lent from the steady, laminar flow past a circular
cylinder. A reference study in this field may be considered [36].
According to [36], at X∞ and Y∞, the boundary conditions

∂ψ̂

∂X(Y )
= ∂ω

∂X(Y )
= 0 (10)

provide accurate results at moderate Re values. In (10), ψ̂ =
ψ − Y is the deviation from the uniform flow.

Numerical experiments were made with both relations (3e)
and (10) as boundary conditions at infinity. The velocity profiles
used in the computations of the conjugate heat transfer were
calculated by solving numerically the Navier–Stokes equations
with boundary conditions (10) at infinity.
The spatial derivatives of Eq. (2a) were discretized with
the exponentially fitted scheme [37]. The standard central or-
der scheme was used to approximate numerically the spatial
derivatives of (2b). The discretization steps in both spatial di-
rections are equal and took the values 1/64, 1/128 and 1/256.
The discrete parabolic equation was solved by the implicit ADI
method. The time step was variable and changed from the start
of the computation to the final stage. The initial and final values
of the time step depend on the parameter values.

4. Results

The flat plate was the first case for which the problem of
conjugate transfer was formulated. However, the flat plate is not
the single geometry for which the problem of conjugate transfer
was solved, [38] (for the unsteady conjugate heat/mass transfer
from an infinite cylinder) and [39,40] (for the unsteady conju-
gate heat/mass transfer from a sphere).

The infinite cylinder and the sphere are bodies characterized
by a single geometric quantity. The influence of this geomet-
ric quantity on the conjugate heat transfer is quantified by the
dimensionless groups, Reynolds or Peclet. The finite plate is
characterized by two geometric quantities: length and thick-
ness. The finite plate dimensionless groups are defined based on
the plate’s length. Thus, in comparison with the infinite cylin-
der and the sphere, the finite plate exhibits a new parameter, the
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Table 2
Asymptotic values of the overall and fractional Nu numbers at Re = 100, Pr = 0.1 and ε = 1

Φ Ξ

0.01 0.1 0.2 0.5 1 2 5 10 100

0 2.4674
0.01 2.45a 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.45

2.47b 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47
2.81c 3.13 3.15 3.16 3.165 3.17 3.17 3.17 3.17

0.1 1.50* 2.305 2.31 2.31 2.315 2.32 2.32 2.32 2.32
2.67* 2.51 2.50 2.50 2.50 2.50 2.50 2.50 2.50
0.345* 2.82 2.99 3.10 3.13 3.15 3.16 3.16 3.16

0.2 0.71* 2.12 2.15 2.17 2.17 2.18 2.18 2.18 2.18
2.84* 2.55 2.54 2.536 2.53 2.53 2.53 2.53 2.53
0.19* 2.50 2.83 3.00 3.05 3.12 3.14 3.15 3.15

0.5 0.27* 1.55 1.72 1.80 1.82 1.83 1.835 1.84 1.84
2.94* 2.68 2.64 2.62 2.615 2.61 2.61 2.61 2.61
0.14* 1.83 2.45 2.86 2.99 3.05 3.09 3.10 3.12

1 0.12* 0.93 1.18 1.35 1.40 1.42 1.43 1.44 1.44
2.97* 2.81 2.75 2.72 2.71 2.70 2.70 2.70 2.69
0.11* 1.39 2.08 2.66 2.88 2.98 3.05 3.08 3.10

2 0.11* 0.98* 1.39 1.74 1.86 1.92 1.96 1.97 1.98
2.99* 2.90 2.86 2.82 2.81 2.80 2.80 2.80 2.79
0.11* 1.18* 1.84 2.51 2.79 2.93 3.02 3.06 3.07

5 0.1* 0.97* 1.48 2.02 2.26 2.40 2.47 2.50 2.51
2.99* 2.96 2.94 2.92 2.91 2.90 2.90 2.90 2.89
0.1* 1.04* 1.65 2.35 2.68 2.87 2.98 3.02 3.04

10 0.09* 0.95* 1.49 2.08 2.41 2.57 2.69 2.73 2.75
2.99* 2.98 2.97 2.96 2.95 2.95 2.95 2.94 2.94
0.09* 0.98* 1.57 2.23 2.63 2.83 2.96 3.00 3.03

100 0.08* 0.95 1.50 2.20 2.56 2.78 2.91 2.96 3.01
2.99* 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99
0.08* 0.95 1.51 2.22 2.58 2.80 2.94 2.99 3.04

∞ 0.12 0.97 1.54 2.27 2.66 2.89 3.04 3.09 3.13

* Unfrozen asymptotic value. a Overall Nu number, Nup if Φ < 1, Nuf if Φ � 1. b Internal Nu number, Nuint.
c External Nu number, Nuext.
dimensionless thickness ε. The analysis made in [29] reveals
that, for the external problem, the asymptotic values of the Nu
number depends on the product εΞ . Solving the internal prob-
lem (i.e. Eq. (2b) with the boundary conditions (3c), (3d) and
Zp = 0 at Y = 0 and the initial condition (4)) we found that
the product (asymptotic value of Nu) × (ε) is a constant that
does not depend on ε. Under these conditions, the following
problem occurs: for given Re and Pr values, does the unsteady
conjugate heat transfer from a flat plate depend explicitly on ε?
Or, perhaps, the influence of the aspect ratio can be expressed
by means of different parameters combinations? In this work
we tried to find an answer to this problem.

We considered a single Re number value, Re = 100. The
forced convection heat transfer from a flat plate is usually stud-
ied for three distinct sets of Pr values, e.g. Pr � 1, Pr ≈ 1
and Pr � 1. In this work, Pr takes the following three val-
ues, Pr = 0.1, Pr = 1 and Pr = 10. For small values of the
Peclet number, i.e. the product Re Pr, the behaviour of the sys-
tem approaches that of the motionless systems. For motionless
systems, in conjugate heat transfer, Nu → 0 when τ → ∞. For
very large values of the Peclet number, the numerical errors in-
crease. For these reasons, we selected a single Re value, i.e.
Re = 100, and Pr = 0.1, 1, 10.
The conductivity ratio, Φ and the volume capacity ratio, Ξ ,
take values in the range 10−2–102. The values considered for
the aspect ratio, ε, are: ε = 2w , w = −4, −3, −2, −1, 0, 1, 2,
3. We considered ε = 1 as basic case. The other values of the
aspect ratio were selected in order to investigate its influence on
the heat transfer rate for a variation of approximately ±1 order
of magnitude.

The accuracy of the numerical solving of the Navier–Stokes
equations is analysed in terms of the drag coefficient, CD . For
Re = 100, in elliptic coordinate system, Robertson et al. [34]
obtained CD = 0.186 (X∞ = 2.5). In the Cartesian coordi-
nate system, Vynnycky et al. [22] obtained CD = 0.166 (for
X∞ = Y∞ = 5). The present numerical experiments show that
for X∞ = Y∞ � 4 and boundary conditions (10) the numeri-
cal values of the drag coefficient remain practically constant.
The value obtained for CD is CD = 0.171. We observe that
this value does not coincide with that calculated in [29] in el-
liptic coordinate system, i.e. CD = 0.18. In all our numerical
experiments, even using a local mesh refinement algorithm in
the vicinity of the plate, the results obtained in Cartesian co-
ordinates do not match perfectly those obtained in elliptic co-
ordinates. The numerical experience accumulated until now for
this problem is not enough for an exact verdict. Similar situa-
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Table 3
Asymptotic values of the overall and fractional Nu numbers at Re = 100, Pr = 10 and ε = 1

Φ Ξ

0.01 0.1 0.2 0.5 1 2 5 10 100

0 2.4674
0.01 2.464a 2.464 2.464 2.464 2.464 2.464 2.464 2.464 2.464

2.468b 2.468 2.468 2.468 2.468 2.468 2.468 2.468 2.468
16.30c 16.35 16.35 16.35 16.35 16.35 16.35 16.35 16.35

0.1 2.437 2.438 2.438 2.438 2.438 2.438 2.438 2.438 2.438
2.475 2.475 2.475 2.475 2.475 2.475 2.475 2.475 2.475

15.84 16.29 16.31 16.33 16.33 16.33 16.33 16.33 16.33
0.2 2.405 2.408 2.409 2.409 2.409 2.409 2.409 2.409 2.409

2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.48
15.32 16.22 16.27 16.30 16.31 16.31 16.31 16.31 16.31

0.5 2.30 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32
2.51 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50

13.85 16.02 16.14 16.21 16.23 16.25 16.25 16.25 16.25
1 2.10 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19

2.56 2.54 2.53 2.53 2.53 2.53 2.53 2.53 2.53
11.67 15.71 15.94 16.08 16.13 16.15 16.16 16.17 16.18

2 3.30 3.86 3.89 3.91 3.91 3.91 3.91 3.92 3.92
2.66 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59
8.71 15.20 15.61 15.86 15.95 15.99 16.01 16.02 16.03

5 4.18 6.94 7.11 7.12 7.23 7.25 7.26 7.26 7.27
2.84 2.72 2.71 2.70 2.70 2.70 2.70 2.70 2.70
5.93 14.17 14.94 15.42 15.58 15.66 15.71 15.72 15.74

10 4.28 9.07 9.51 9.78 9.87 9.92 9.95 9.96 9.97
2.92 2.82 2.81 2.80 2.80 2.80 2.80 2.80 2.80
5.01 13.36 14.38 15.03 15.25 15.37 15.43 15.46 15.48

100 4.12 11.61 12.83 13.66 13.95 14.11 14.20 14.23 14.25
2.99 2.98 2.975 2.97 2.97 2.97 2.97 2.97 2.97
4.18 12.08 13.41 14.32 14.64 14.81 14.91 14.94 14.97

∞ 4.25 13.34 14.64 15.49 15.78 15.94 16.04 16.07 16.09

a Overall Nu number, Nup if Φ < 1, Nuf if Φ � 1. b Internal Nu number, Nuint.
c External Nu number, Nuext.
tions can be viewed at the other benchmark problems (cylinder,
sphere).

It must be mentioned that in [29] and [34] the finite plate
is submerged into the flowing fluid. The hydrodynamic force
that acts on a submerged finite plate is different from that corre-
sponding to the present case. However, in [29] and [34] the flow
is considered symmetric about the x-axis. The computational
domain is the upper half of the xy plane. Implicitly, the results
presented in [29] and [34] are valid only for y � 0. Under these
conditions we can compare the present drag coefficient with the
drag coefficient values obtained in [29] and [34].

In literature there are no data to verify the accuracy of the
unsteady conjugate heat transfer computations. The accuracy
of the unsteady conjugate heat transfer computations is verified
using the same rules as in [38] and [40] (i.e. when Φ → 0, the
asymptotic values of Nu and Nuint should tend to the solution of
the internal problem; for Φ → ∞, the asymptotic values of Nu
and Nuext should tend to the solution of the external problem).
These aspects are discussed in the next paragraphs of this sec-
tion. The conjugate heat transfer results presented in this sec-
tion were obtained on a mesh with steps �X = �Y = 1/256.
For Pr = 1 and 10, we considered X∞ = Y∞ = 4 while for
Pr = 0.1, X∞ = Y∞ = 8.

We consider as starting point for our analysis the results ob-
tained for ε = 1. For Pr = 1, 0.1 and 10 the asymptotic values of
the average Nu numbers (overall and fractional) are presented in
Tables 1–3 and plotted in Figs. 2, 3, respectively. For Pr = 0.1
and 10 we plotted in Fig. 3 only the overall Nu number. The
graphs for Nuint and Nuext are similar to Figs. 2(b) and (c) with
the mention that the influence of Ξ is stronger for Pr = 0.1
and slower for Pr = 10. In each cell of Tables 1–3 the first line
shows the asymptotic value of the overall Nu number, the sec-
ond line the asymptotic value of the internal Nu number and the
third line the asymptotic external Nu number. The presence of
the superscript ∗ in a cell indicates that the time variation of
Nu does not reach a frozen asymptotic value. The values de-
picted in this case correspond to the integration final, when the
time variation of Nu becomes small. The first row in each table,
i.e. the row corresponding to Φ = 0, shows the asymptotic Nu
values computed for the internal problem. The asymptotic Nu
number values calculated in [29] for the external problem are
presented in the last row of each table (the row corresponding
to Φ = ∞).

Tables 1–3 show a very good agreement between the present
solutions (overall and internal Nu numbers) and the solution of
the internal problem when Φ → 0. When Φ → ∞, the present
values of the asymptotic Nu numbers (overall and external) tend
to the solution of the external problem. As in the case of the
drag coefficient, a difference between the Cartesian coordinate
data and elliptic coordinate data exits. This difference increases
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Fig. 2. The influence of the conductivity ratio (Φ) and heat capacity ratio (Ξ)

on the asymptotic values of the Nu numbers for Re = 100, Pr = 1 and ε = 1;
(a) overall Nu number; (b) internal Nu number; (c) external Nu number.

with the increase in Pr. During the present numerical exper-
iments we observed the presence of a persistent difference,
around 1.5–3%, between the asymptotic Nu values provided by
relations (6a) and (6b). Note that for cylinder and sphere this
Fig. 3. The influence of the conductivity ratio (Φ) and heat capacity ratio (Ξ)

on the asymptotic values of the overall Nu numbers for Re = 100 and ε = 1;
(a) Pr = 0.1; (b) Pr = 10.

difference is smaller than 1% and may be considered numerical
error. In the case of the finite flat plate we think that this dis-
crepancy is due to the fact that the heat flux on the surface of
the plate is integrally singular at X = ± 1

2 . The cylinder and the
sphere do not exhibit any singularity. The results presented in
Tables 1–3 were calculated with relation (6b).

We expected that for Φ = 100 the temperature of the plate
to be spatially uniform. The numerical simulations made show
that, for Φ = 100, the difference between Z̄p and Z̄p,s in-
creases with the increase in Pr (from approximately 0.7% at
Pr = 0.1 to approximately 5% at Pr = 10). We made some nu-
merical experiments with Φ = 1000. For Pr = 0.1 and 1 the
results are practically the same. For Pr = 10, the relative differ-
ence between Z̄p and Z̄p,s becomes smaller than 1%.

A solid body has spatially uniform temperature during un-
steady convection if

Nuext

Φ
< 0.1

Tables 1, 2 show that the previous condition is fulfilled for
Pr = 0.1, 1 and Φ = 100. Table 3 shows that for Pr = 10, the
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Fig. 4. The influence of the aspect ratio on the asymptotic values of the frac-
tional Nu numbers for Re = 100, Pr = 1 and Φ = 0.01; (a) internal Nu number;
(b) external Nu number.

previous criterion is satisfied when Φ > 100. Note that the ratio
(Nuext/Φ) is also known as the Biot number.

Tables 1–3 and Figs. 2, 3 show that the influence of the con-
ductivity ratio and heat capacity ratio on the asymptotic values
of the Nu numbers is similar to that encountered at the cylinder
[38] and the sphere [40]. However, we observe that for Ξ � 0.1,
the data are more grouped; the influence of the heat capacity ra-
tio on the asymptotic Nu numbers values is weaker. Also, the
increase in Pr decreases the influence of Ξ . For Pr = 1 and 10,
thermal wake [29,38,40] occurs only for Ξ = 0.01 and Φ > 0.2
(Pr = 1), Φ > 2 (Pr = 10). For Pr = 0.1, thermal wake occurs
for Ξ = 0.2 and Φ > 2.

The results obtained for the internal and external problems
suggest the analysis of the influence of the aspect ratio on the
conjugate heat transfer in terms of fractional Nu numbers. The
following strategy was adopted in this work: for a given value of
the conductivity ratio, we studied the effect of Ξ on the prod-
uct (asymptotic Nuint) ×(ε) and the effect of the product εΞ

on the asymptotic values of Nuext. From the numerical exper-
iments made we selected for presentation the results obtained
for Φ = 0.01 (Figs. 4–6), Φ = 1 (Figs. 8–10) and Φ = 100
Fig. 5. The influence of the aspect ratio on the asymptotic values of the frac-
tional Nu numbers for Re = 100, Pr = 0.1 and Φ = 0.01; (a) internal Nu
number; (b) external Nu number.

(Fig. 11). The data obtained for 0.1 � Φ � 10 are similar to
those depicted in Figs. 8–10.

For Φ = 0.01 the plate controls the heat transfer. The ex-
pected results are: (1) (Nuint) × (ε) constant and (2) the influ-
ence of the heat capacity ratio and aspect ratio on Nuext negli-
gible. Figs. 4–6 show that:

(i) the influence of the aspect ratio on (Nuint)×(ε) is relatively
significant only for Pr = 0.1 and 1, small values of the heat
capacity ratio (Ξ < 1) and small ε values (ε < 0.125 for
Pr = 1 and ε � 0.25 for Pr = 0.1); in all the other sit-
uations, (Nuint) × (ε) may be well approximated by the
asymptotic value of the Nu number for the internal prob-
lem; the maximum relative difference is 2.5% (this value
was obtained for Pr = 0.1, Ξ � 1, ε = 0.0625).

(ii) the aspect ratio influences the asymptotic Nuext values only
for small values of εΞ ; the εΞ boundary value, (εΞ)bv,
i.e. the value for which the influence of the aspect ratio
on asymptotic Nuext becomes negligible, depends on Pr;
it varies from (εΞ)bv ∼= 1 at Pr = 0.1 to (εΞ)bv ∼= 0.01 at
Pr = 10; for εΞ < (εΞ)bv, the spread in asymptotic Nuext

values is higher at small Pr values; we also observe that
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Fig. 6. The influence of the aspect ratio on the asymptotic values of the frac-
tional Nu numbers for Re = 100, Pr = 10 and Φ = 0.01; (a) internal Nu num-
ber; (b) external Nu number.

for a given εΞ value, εΞ < (εΞ)bv, the decrease in ε de-
creases the asymptotic Nuext value.

In this moment, we should mention the following important
aspect: for small values of the aspect ratio, i.e. ε = 0.0625 and
ε = 0.125, the time variation of the Nu numbers does not sta-
bilize; a frozen asymptotic value is not attained. The values
plotted in Figs. 4–6 correspond to very small values of Z̄p ,
10−4 � Z̄p � 10−3. It must be mentioned that the time inte-
gration was stopped when Z̄p � 10−4. The previous statements
are not valid only for Φ = 0.01. They are valid for Φ < 100
(see Fig. 7).

The present Nu numbers are not a direct measure of the heat
transfer rate but have a nonzero asymptotic limit (for this reason
they are used). They are the ratio of two instantaneous aver-
age quantities: (1) dimensionless temperature gradient on the
plate surface and (2) dimensionless driving force (average plate
temperature, average surface plate temperature or the difference
between these two quantities). The frozen asymptotic value is
reached when the temperature gradient and the driving force
obey the same exponential decrease in time. For small ε val-
ues and Φ < 100, the driving force decreases a bit faster than
Fig. 7. Time variation of the fractional Nu numbers; (a) internal Nu number;
(b) external Nu number.

the temperature gradient. For this reason, Nuint and Nuext do not
reach a frozen asymptotic value.

We also made numerical experiments with Φ = 10−3. For
Φ = 10−3 the influence of the aspect ratio on the asymptotic
values of (Nuint) × (ε) is considerably smaller. Only for Pr =
0.1, Ξ = 0.01 and ε = 0.0625 the asymptotic (Nuint) × (ε)

value is (Nuint) × (ε) = 2.86. In all the other cases, (Nuint) ×
(ε) ∼= 2.46. For Φ = 10−3 the influence of the product εΞ

on the asymptotic Nuext remains significant only for Pr = 0.1,
Ξ = 0.01 and ε = 0.0625, 0.125.

The salient features of the conjugate transfer are best empha-
sized by the case Φ = 1. Figs. 8(a)–10(a) show that the influ-
ence of the aspect ratio on (Nuint) × (ε) is simple and clear: the
increase in ε decreases the asymptotic values of (Nuint) × (ε).
We also observe that for ε � 0.125 and ε > 1 the influence of
the heat capacity ratio on (Nuint) × (ε) is less significant. The
influence of the aspect ratio on the asymptotic Nuext values is
more complex. Figs. 8(b)–10(b) show that there exists a εΞ

value, (εΞ)∗, that separates two domains in which the influence
of the aspect ratio on Nuext is different. This value depends on
Pr and it increases with the decrease in Pr. Based on the previ-
ous statements, we may summarize the influence of the aspect
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Fig. 8. The influence of the aspect ratio on the asymptotic values of the frac-
tional Nu numbers for Re = 100, Pr = 1 and Φ = 1; (a) internal Nu number;
(b) external Nu number.

ratio on the asymptotic values of the external Nu number as fol-
lows:

– for εΞ < (εΞ)∗ and ε � 1, Nuext depends only on the prod-
uct εΞ ;

– for εΞ < (εΞ)∗ and ε > 1, the increase in the aspect ratio
increases the asymptotic Nuext values;

– for εΞ � (εΞ)∗ and ε > 0.125, Nuext may be considered
approximately constant;

– for εΞ � (εΞ)∗ and ε � 0.125, the decrease in ε increases
Nuext.

For Φ = 100 the behaviour of the system should be similar
to that of the external problem, i.e. Nuext depends only on the
product εΞ and (Nuint) × (ε) is independent from ε and Ξ .
Fig. 11 shows that:

(i) the asymptotic values of Nuext depend only on the product
εΞ ; the influence of the aspect ratio as independent para-
meter may be considered negligible;

(ii) for a given value of the aspect ratio, the influence of the
volume heat capacity ratio on (Nuint) × (ε) is negligible;
the influence of the aspect ratio on (Nuint)×(ε) is relatively
Fig. 9. The influence of the aspect ratio on the asymptotic values of the frac-
tional Nu numbers for Re = 100, Pr = 0.1 and Φ = 1; (a) internal Nu number;
(b) external Nu number.

significant; we observe that the increase in the aspect ratio
decreases the values of (Nuint)× (ε); we must also mention
that the increase in ε increases the difference between Z̄p

and Z̄p,s .

We did not plot the results obtained for Φ = 100 and Pr =
0.1, 1 because these are similar to those plotted in Fig. 11. We
must mention that the maximum relative difference between
different (Nuint)× (ε) values is around 1.5% (for Pr = 0.1) and
3% (for Pr = 1).

In the previous paragraphs we analysed the local (i.e. the
analysis was made for a single value of the conductivity ratio)
influence of aspect ratio on the conjugate transfer. Concerning
the global effect of the aspect ratio on the conjugate transfer, we
can make the following observation, valid only for (Nuint) ×
(ε): for a given value of the Pr number, the increase in ε has
approximately the same effect as the decrease in Φ . It is difficult
to establish an exact relation about the conjugate action of these
two parameters (especially for small values of the heat capacity
ratio). However, we may approximate the conjugate action of
ε and Φ by considering the ratio Φ/ε instead of Φ . For the
asymptotic values of Nuext we could not find any global rule.
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Fig. 10. The influence of the aspect ratio on the asymptotic values of the frac-
tional Nu numbers for Re = 100, Pr = 10 and Φ = 1; (a) internal Nu number;
(b) external Nu number.

Concerning the global behaviour of the system, other obser-
vations that can be made are: the influence of the conductivity
and heat capacity ratios on the conjugate heat transfer is the
same for any value of the aspect ratio; the decrease in ε in-
creases the presence of the thermal wake phenomenon.

Based on the results obtained in this section, we tried to es-
tablish some rules to estimate the asymptotic Nu number values
without solving the heat balance equations. For other Re, Pr and
ε than those used in this work, we may compute the asymptotic
Nu values as follows:

– when Φ → 0, Nu tends to the solution of the internal prob-
lem; in this case, (Nu) × (ε) = constant ∼= 2.467; when
Φ → ∞, Nu tends to the solution of the external problem;
for given Re and Pr values, Nuext depends only on the prod-
uct εΞ ;

– for high values of Re and Re Pr, the influence of Ξ on as-
ymptotic Nu values is negligible for Ξ > 0.1; for high Re
numbers, Nuext tends to the boundary layer results, [29];
thus, for high Re numbers, high Re Pr values and Ξ > 0.1,
the asymptotic Nu values may be calculated with the inter-
polation relation
Fig. 11. The influence of the aspect ratio on the asymptotic values of the frac-
tional Nu numbers for Re = 100, Pr = 10 and Φ = 100; (a) internal Nu number;
(b) external Nu number.

1

Nu
= 1

Nui

+ Φ
1

Nue

if Φ � 1

1

Nu
= 1

Φ

1

Nui

+ 1

Nue

if Φ � 1

where Nui is the asymptotic solution of the internal prob-
lem and Nue is the boundary layer result.

For small Re and Re Pr values it is difficult to derive any
scaling law. The influence of Ξ increases with the decrease in
Re Pr. Also for Re Pr < 1, the behaviour is similar to that of
motionless systems.

The last problem discussed in this section is: for other bodies
characterized by two geometric quantities, does the conjugate
heat transfer follow similar or different rules? The present re-
sults were obtained under the assumption that the geometric
parameter (i.e. the aspect ratio) does not affect the external flow.
Thus, for similar cases (for example, the heat source embedded
in a large substrate, the backward-facing step flow [41], the lam-
inar offset jets) we think that similar results may be obtained.
For bodies for which the geometric parameter influences the
external flow (for example, elliptic cylinder, spheroids) it is dif-
ficult to make any prediction.
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5. Conclusions

The unsteady physical conjugate heat transfer from a finite
flat plate was investigated. The flow past the flat plate was con-
sidered steady, laminar at zero incidence. The plate Re number
takes the value 100. The Pr number was considered equal to
0.1, 1 and 10. The main problems analysed were the influence
of the physical properties ratio and the aspect ratio on the heat
transfer rate.

The numerical results obtained in this work may be summa-
rized as follows:

– for given values of the aspect ratio and Pr number, the
influence of the conductivity and heat capacity ratios on
the conjugate heat transfer is similar to that encountered at
cylinder and sphere; for Φ → 0 the asymptotic Nu values
tend to the solution of the internal problem; the solution of
the internal problem does not depend on Ξ ; for Φ → ∞
the asymptotic Nu values tend to the solutions of the exter-
nal problem; the solution of the external problem depends
strongly on Ξ ;

– for a given Pr value, the quantity (asymptotic value of
Nuint) × (ε) may be considered dependent on Φ,ε and Ξ ;
for Φ → 0 (∞) the influence of Ξ and ε on (asymptotic
value of Nuint) × (ε) may be considered negligible;

– the influence of the aspect ratio as independent variable on
the asymptotic values of external Nu number is relatively
significant for small values of the aspect ratio (ε � 0.125),
small values of εΞ and Φ < 100.
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